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Abstract-Solutions arc obtained. using the exact three-dimensional theory of elasticity, to (i) the
eigenvalue problem of buckling under biaxial compression or the free lateral vibration of a simply
supported rectangular plate with orthotropic stress-strain properties, and (ii) the static response
or the same plate to a lateral load that varies sinusoidally in two directions. The eigenvalue in
problem (i) and the lateral deftections of both tbe surface and middle plane of the plate, as well as
the bending strains, in problem (ii) are obtained in the form of series expansions in even powers
of the plate thickness. Exact algebraic expressions are presented for the first two coefficients in the
case of orthotropic plates; additional coefficients can be obtained if required, and are given for the
much simpler case of isotropic plates. In aU cascs the first term aarccs with classical plate theory.
The solutions arc compared with those obtained from Mindlin's plate theory. In neither problem
is it found to be possible, in pneral. to choose values for Mindlin's eft'ective shear moduli to make
the Mindlin solution agree with the first two terms of the exact solution. There arc. however. two
exceptions to this, namely a restricted class of orthotropic materials, embracinl all isotropic ones,
in which tbe clastic constants satisfy a certain condition, and the case of cylindrical bending when
the Mindlin plate reduces to a Timoshenko beam of wide rectangular cross-section. In both these
exceptional cascs appropriate values for the eft'ective shear moduli arc obtained.

I. INTRODUCTION

Classical plate theory (CPT) assumes that (i) the lateral displacement wis constant through
the thickness, (ii) normals to the middle surface remain both straight and normal after
deformation, and usually (iii) in the dynamic case the rotational inertia, arising from u, v
displacements parallel to the middlesurface due to bending, is negligible. With the possible
exception of edge effects, the error in CPT is O(h'J.p.'J.) where h is the thickness and A. a
typical "half-wavelength", or characteristic length, of the bent surface. For isotropic plates
the error is usually very small in practice, though it can be significant at the shorter
wavelengths associated with high frequency vibration modes. Nevertheless there has been
much attention paid to the development of higher order plate theories with the implicit
aim of reducing the error to O(h4 /A.4 ) or less. Notable among these are the theories of
Reissner[l] and Mindlin[2]. There have also been other, more recent, theories proposed
but they will not be mentioned further here.

In recent years, however, the development of fibre-reinforced composites has resulted
in greater interest being shown in higher order theories. The reason is that in such plates
the shear modulus associated with transverse (i.e. "through-the-thickncss") shearing stresses
is often very small compared with the elastic moduli associated with the bending stresses;
this results in CPT becoming inadequate at much smaller hlA. ratios than in the isotropic
case.

In order to assess the accuracy of approximate higher order theories it is obviously
advantageous if some "exact" solutions of plate problems, based upon three-dimensional
elasticity theory, are available for comparison. Such solutions have been derived for certain
problems associated with the buckling, vibration or static loading of simply supported,
orthotropic rectangular plates, of both homogeneous and laminated types, notably by•Srinivas and co-workers(3-6] and Pagano[7]. They obtained many numerical solutions
in this way and compared them with various approximate theories.

In this paper we shall obtain algebraic solutions for the same set of problems considered
by Srinivas and co-workers except that, in order to keep the algebra within manageable
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bounds, we shall confine ourselves to homogeneous plates only. The problems considered
are (i) the eigenvalue problem arising from either the buckling under biaxial compression
or the free vibration of the plate, and (ii) the response to a static, lateral loading with
intensity varying sinusoidally in both the x- and y-directions. Both problems result in a
doubly sinusoidal mode of deformation, enabling a solution to be obtained by separation
of the variables.

We shall start with the basic equations of three-dimensional, orthotropic elasticity,
but whereas Srinivas and co-workers[3-6] resorted to computation at an early stage and
obtained numerical solutions for specific cases our solutions will be entirely algebraic. The
eigenvalue in problem (i) and the deflections and bending strains in problem (ii) are in the
form of series expansions in powers of h2

• Specific expressions are given for the first two
terms in the case of a general orthotropic material; more terms are obtainable but they
become increasingly complicated algebraically. It is, however, rather easy to obtain
additional terms of the series for an isotropic plate, and this has been done.

These solutions are then used to discuss the accuracy of Mindlin's plate theory. What
appear to be new results are obtained for the effective shear modulus in the case of isotropic
plates, enabling the error to be reduced from O(h2f),2) to O(h4f),4), and smaller still for all
practical purposes in the eigenvalue problem. But for orthotropic plates it is shown that
in general it is impossible to select values for Mindlin's two effective shear moduli which
reduce the error to O(h4f)..4) for all values of the ratio between the wavelengths in the x
and y-directions. The only exception to this is a class of orthotropic materials, embracing
all isotropic ones, in which the elastic constants satisfy a very restrictive condition. It is
possible also in the case of cylindrical bending of an orthotropic plate, in which case the
Mindlin plate behaves effectively as a Timoshenko beam of wide rectangular cross-section.

2. THREE-DIMENSIONAL THEORY OF ELASTICITY SOLUTIONS

2.1. The basic equations of three-dimensional elasticity
Consider a homogeneous elastic plate, of uniform thickness h, subjected to uniform

static compressive stresses O'~ and O'~ parallel to axes x and y lying in the middle plane of
the plate. Suppose that small displacements u(x, y, z, t), v(x, y, z, t) and w(x, y, z, t) occur from
this datum state of uniform biaxial compression. Then, if there are no body forces, the
equations of motion of an element in the x-, y- and z-directions are

OO'x OtXY Otu u)()-+ +-=.z; uax oy oz
OtXY ~ Oty: _ CO( )ox + oy + OZ -.z; v

Otu Oty: 00': CO()-+ +-=.z; wox oy oz

where the differential operator fi' is defined by

(1)

(2)

and p is the density. The stresses O'x, O'y, 0'.. t xy , t x : and t y: are additional to those in the
datum state.

The operator fi' which appears on the right-hand sides of eqns (1) takes account not
only of the inertia forces but also of the destabilizing effect of O'~ and O'~ in all three
directions. The simplest way of deriving these terms is via a variational principle, using
Green's strain tensor to relate the linear strains in the x- and y-directions to the
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displacements u, v, wby the quadratic expressions (ou/ox) + B~ and (ov/oy) + B;, respectively,
where

(3)

The constitutive equations for an orthotropic material with principal axes parallel to
x, y, z are

a" = Cll B" + C12B, + C13Bz'

a, = C12B" + CUB, + C23Bz'

az = C13B" + C23B, + C33Bz'

where the strains are given by

(4)

ov ow
'I, z = oz + oy'

OV
B, =oy'

(5)

Substitution of eqns (4) and (5) into eqns (1) gives three equations of motion expressed
in terms of the displacements, as follows:

(6)

In the special case of an isotropic material we have

(I - v)E 2(1 - v)G
CII = C22 = C33 = (1 + v)(1 - 2v) = (1 - 2v)

and

vE 2vG
C12 = Cl 3 = C23 =(1 + v)(1 - 2v) =(I - 2v)

E
C44 = C55 = C66 = = G

2(1 + v)

(7)

where E, G and v are the Young's modulus, shear modulus and Poisson's ratio, respectively.
Equations (6) then take the concise form

{o a o}-;-;- e + (I - 2v).Jff{u·v·w} =0ax iJy iJz ' , (8)
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where e is the dilatation, defined by
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e = (ilu/ex) + (ilv/ey) + (ow/ilz)

and the differential operator :1f is defined by

(9)

(10)

2.2. The general solution for a doubly sinusoidal mode of displacement
The problems for which we shall obtain solutions are all concerned with a mode of

displacement of the form

u(x, y, z, t) = U(z) cos o:x sin py cos wt

v(x,y,z,t) = V(z)sino:xcospycoswt

w(x,y,z,t) = W(z)sino:xsinpycoswt.

(11)

Using eqns (4) and (5) it can then be seen that w = 0, v = 0 and a% = 0 on the edges
x = 0 and a, whilst w = 0, U = 0 and ay = 0 on the edges y = 0 and b of a rectangular
plate, provided that 0: and p are such that o:a/n and pb/n are integers. For convenience we
shall refer to edges with these boundary conditions as simply supported. Clearly the
conventional definition of a simply supported edge in classical thin plate theory conforms
to this more general definition.

If eqns (11) are substituted into eqns (6) we obtain the following simultaneous
differential equations for U, V and W

where ~ is the operator d/dz

- (C44/C 5S)1/2b3
(~2 - a4 )

-(C44/C33)1/2bs~

(12)

a3 = (C SS 0: 2 + C44P2 - ¢)/C33'

a4 = (C660:
2 + C22P2 - ¢)/C44'

as = (C ll 0:
2 + C66P2 - ¢)/css,

and ¢ is defined by

b3 = (C 12 + C66)o:P/(C44CSS)1/2

b4 = (C13 + css)0:/(C33 C5S)1/2

bs = (C23 + C44)P/(C33C44)1/2

(13)

(14)

If U and V are eliminated from eqn (12) we obtain a sixth-order differential equation for
W(z), namely

where

QI = a3 + a4 + as - bi - b;

Q2 = a3a4 + a4aS + aSa3 + 2b3b4bs - b~ - a4bi - asb;

Q3 = a3(a4aS - b~).

(15)

(16)
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Let the roots of the auxiliary equation ofeqn (15) be ±ql' ±q2 and ±q3' Then

Q1 == qi + q~ + q~

Q _22+2222
2 - qlq2 q2q3 + q3ql

Q3 == qiq~q~·

44S

(17)

In the analysis that follows it is fortunately never necessary to obtain expressions for
the individual roots, ql' q2 and q3' Only eqns (17), and the values of certain other
combinations of the three roots that can be deduced from them, are required, and it is
immaterial whether the individual roots are real, imaginary or complex. The other
combinations that appear in the analysis are always reducible to the form I",.• or J"".,
where

I"". == r.*[q;"'(q;. - qJ")] (18)

(19)

and m and n are positive integers. The symbol r.* denotes a summation extending over

three terms, formed by allocating the values (1,2,3), (2,3,1) and (3,1,2) to the suffixes (i,i, k)
in the general term shown.

Certain relations between the various 1"". and J",.• quantities are given in Appendix
A, and in particular it is shown that they can all be expressed in the form J 1.1 times a
polynomial function of QIt Q2 and Q3'

The general solutions of the differential equations, eqns (12), are

3

U(z) == - r. qje~Kjsinhqjz + Kicoshqiz)
I-I

3

V(z) == - r. qd~KI sinh qjz + K; cosh qlz)
i=1

3

W(z) == L (KjcoshqlZ + Kisinqjz)
j'" 1

where the K i and K; are constants of integration, and

el == (C33/CSS)I/2[b3bs + b.(qi - a.)]/Zj

h == (C33/C••)1/2[b3b. + bs(q; - as)]/Zj

in which

(20)

(21)

(22)

[Note that U == -q;el' V == -qjh is the solution of the first two of eqns (12) with !!)

replaced by qj and W == 1.]
The stresses acting on planes perpendicular to the z-axis, which are required later, are

obtainable from eqns (4), (5), (11) and (20). They are given by

(1% == It% sin cxx sin py cos rot

f n == f n cos rxx sin py cos rot

f y% == f y%sin cxx cos py cos rot

(23)
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where the quantities bearing a circumflex are functions of Z given by

3

U. = L q,{c 13exe j + C23/3J; + c33)(K j sinh qjZ + K; cosh qjz)
i= 1

3

t .. = Css L (ex - q;ei)(Kjcoshqjz + K;sinhqjz)
j= 1

3

f,. = C44 L (/3 - q;J;)(Kjcosh qjZ + Ki sinh q;z).
i= 1

2.3. The eigenvalue problem and its solution
We shall now solve, simultaneously, the problems of:

(24)

(a) initial buckling of a simply supported rectangular plate under the uniform biaxial,
static, compressive stresses O'~ and O'~, and

(b) free lateral vibration at a frequency w of a simply supported rectangular plate
about the datum state of uniform biaxial, static, compression O'~ and O'~.

In both cases the mode is of the form of eqns (11). In the buckling problem we have
w = 0, and ~, defined in eqn (14), is then a load parameter. In the vibration problem we
postulate that O'~ and O'~ are specified but are not large enough to cause the plate to buckle,
and ~ is then a frequency parameter. Both are eigenvalue problems, and since O'~, O'~ and
w appear only in combination in the form of the parameter e, its eigenvalues simultaneously
give the buckling loads in problem (a), and the natural frequencies in problem (b). Moreover,
the buckling and vibration modes are identical.

It is clear that the lowest buckling load and the lowest natural frequency, for given
values of the wavelength parameters ex and /3, will be associated with modes in which W(z)
is an even-valued function whilst U(z) and V(z) are odd-valued functions. Hence, referring
to eqns (20), we may assume that K; = 0 (i = 1,2,3). We now impose the condition that
the plate surfaces, z = ±th, are free from traction, so that

Equations (24) then give

q~F2T2

(ex - e2q~)

(f3 - f2q~)

(25)

where

and

Alternatively 7; can be expanded into the form of a series

(26)



Analytical. three-dimensional elasticity solutions to some plate problems 447

For a non-trivial solution of eqn (25) to exist, the determinant of the matrix must
vanish and this gives the following characteristic equation

where the summation is as defined in the sentence following eqn (19).
If eqns (26) and (27) are substituted into eqn (28) the resulting equation can be

expressed as

where

(
h
2
) 6(h2)2 51 (h

2
)3I/IIO} _ _ 1/1(1) + - - 1/1(2) - - - 1/113} + ... = 0

12 5 12 35 12

I/Ilr) = L*[qfr+2(c13aej + C23P/; + c33){a(q;lj - qUi,) + fJ(q:et - qJej )

+ q;q:(e)'t - etlj)}].

(29)

(30)

Note that the coefficient of I/Ilr) in eqn (29) is the same as that of qfr in the series expansion
of 1; in eqn (27). After a cyclic modification of the suffixes i, i, k on some of the terms in
eqns (30) it can be written as

I/I(r) = c13a{aHr~ + fJHr~ + Hr~} + c23fJ{aH~~ + fJH~~ + H~~}

+ c33{aH~~ + PH~~ + H~~} (31)

where

H~~ = L*qfqJ(qfr - qj')/;lj

(32)

By using eqns (16), (17), (21) and (22) all of the H~~ summations defined in eqns (32)
can be expressed in terms of the 1...... or J...... types, as defined in eqns (18) and (19). These
in turn can all be expressed in terms of J 1•1 as explained in Appendix A, and this enables
the H~~ summations to be evaluated. It turns out that they all contain a common factor,
", defined by

and values of ,,-1H~! for r =0, 1 and 2 are listed in Table 1.
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Table 1. Values of the H~; summations. defined by eqns (32), for, = O. 1 and 2

o 2

,,-'H~\

,,-I H~1
(C,,!C 44 )tI2,,-' H'[1
(C44!C,,),,2,,-' H~\

(c"!C)3) '12" -'lin
(C 44!C 33 )'/2,,- 1H~~

(C 33!C II )'/2,,- 1H~\

(C 33!C44 )'/2,,- 11I~1

,,-'H~~

-1 (b; - al'
-1 (h; - ( 4)

o (b 4 bl - b3 )

o (b 4 hl - h3 )

o -u l h4

o -a3bl

b4 [b4 (QI - a4 ) + b3bl ]

hI [bs(Q, - as) + h3b4 ]

-a 3 -a 3(a 3 - b; - b;)

Q,(b; - as) + Q2 - a3a4

Q,(h; - ( 4 ) + Q2 - u3al

Q,(b4 bs - b3) + a3b3

Qd b4 hs - h3 ) + a3b3

-a 3(Qt b4 + h3 bs - u4 b4 )

-a3(Qt bS + b3b4 - albs)
Q,[b4 (QI - a4 ) + b3bs] - h4 Q2
Q,[hl(Q, - al) + h3h4 ] - hl Q2
-Q,a3(a 3 - b; - h;) + a3Q2 - Q3

It is now convenient to define 'P(') by

(34)

Expressions for 'P(O), 'P(1) and 'P(2) are readily obtainable using Table 1 and eqns (13), (16)
and (31); they are as follows

"1(0) _ J:
T -<"

m(1) [- 4 2(- 2) 2n2 - n 4]
T = Cll(% + C l 2 + C66 (% I' + CUI'

(
- 2C23C66)n2} ;::2(1 C66)J J:Q+ C22 - I' - <" + - - <" 2

C33 C3 3

where

(35)

(36)

(37)

By putting az = 0 in eqns (4) and eliminating the corresponding value of C;z from the
equations for ax and ay it can be seen that Cll' C22 and Cl2 are modified elastic constants
associated with a state of plane stress (see eqns (68)).

It can be seen from eqn (15) that

Equations (32) and (31) respectively then show that

H('+ I) = Q H(') _ Q H(,-l) + Q H('- 2)
". 1 ". 2 ". 3 ".

and

(39)

(40)

This recurrence equation, in conjunction with eqns (35)-(37), enables 'P(3), 'P(41, ... to
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be obtained sequentiaIly if required.
Note the remarkably simple result for 'fI(0) in eqn (35), as a result of which eqn (29)

becomes

h2 h4 17h6e= - 'fI(1) - - 'fI(2) +-- 'fI(3) - ..•
12 120 20,160 .

(41)

It is apparent from this equation that ~ is of O(h2) and a first approximation for ~

can be obtained from the first term of eqn (41) alone, with 'fI(1) calculated from eqn (36)
with ~ = O. Thus

(42)

It will be seen later than this agrees with the result of classical thin plate theory for
an orthotropic material.

. A second approximation for ecan now be obtained from the first two terms of eqn
(41), using the first approximation (42) to adjust the expression for 'fI(1) in eqn (36), but
with 'fI(2) calculated from eqn (37) with e= O. After some algebraic manipulation this
second approximation can be written as

2R2( 2 R2) ]IX I' C23IX CUI' - 2 - - 6+ -3- --- +--- {(Cll + 2c66) - Cl1 C22} + O(h )
C33 C22 C11

where, to save space, we have introduced the quantities

and

(43)

(44)

In principle this process for obtaining approximations of progressively higher order
can be continued indefinitely, but we shall not take it any further in the case of an
orthotropic plate, partly because of the algebraic complexity and partly because eqn (43)
is sufficient for our purposes. However, the equations for an isotropic plate are algebraicaIly
much simpler and in that case we have taken the process one stage further and obtained
a third approximation for e. The result can be expressed very concisely if we introduce
two dimensionless parameters t/J and .1, given by

(45)

and

(46)
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In terms of these parameters, the third approximation is

(47)

where

17 - 7v
J11 = 5(1 - v)

and

(48)

(49)

Although eqn (47) has been derived by reduction of the equations for an orthotropic
plate, it can be derived in an alternative and more direct way if isotropy is assumed ab
initio, thereby providing a welcome check on the correctness of the algebra in the
orthotropic case. An outline of this alternative derivation is given in AppendixB.

Equations (43) and (47) provide a yardstick against which the accuracy of higher order
plate theories can be measured. In particular we shall use them in Section 3.2 to investigate
the accuracy of Mindlin's plate theory.

2.4. The static loading problem and its solution
We now turn to the problem of a simply supported rectangular plate, with sides a

and b and with zero in-plane loads (i.e. (1~ = (1~ = 0), subjected to a static lateral load in
the z-direction of magnitude p per unit area given by

p = PsinexxsinfJy

where ex and fJ are such that exa/rr and fJb/rr are integers. We shall obtain a solution in the
form of eqns (11) with (l) = O.

In classical plate theory, and indeed in many higher order plate theories, it is immaterial
whether the lateral loading is applied to just one surface, or shared between the two
surfaces z = ± tho The reason for this is, of course, that w is assumed to be independent
of z. In the three-dimensional theory, however, it is necessary to specify precisely how the
load is applied. We shall assume that it is shared equally between the two surfaces, as a
pressure !p on one surface and a tension !p on the other, as shown in Fig. l(a). This results
in an enormous simplification of the analysis, because the displacements are now
antisymmetrical with respect to the middle plane z = O. The boundary conditions to be
satisfied are

atz = ±!h. (50)

It should be noted that if the load is applied as a pressure p on the surface z = - th
only, the exact solution could be obtained by superposition of the solutions for the
antisymmetric and symmetric loadings of Figs l(a) and (b). Clearly the middle plane
deflection in Fig. l(b) is zero, so the middle plane deflection is due entirely to the
antisymmetric load component of Fig. l(a). On the other hand, if the lateral deflection of
the loaded surface is required there is a small error incurred in ignoring the change in the
half-thickness in Fig. l(b). If we assume that (1. = - tp throughout the thickness and that
the strains Ex and Ey are very small compared with E. in Fig. l(b), it is easily seen that the
amplitude of the change in the half-thickness, !bh, is approximately equal to Ph/4c33' Now
it will be found later that the amplitude of the lateral deflection of the plate due to the
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lp
2

Ip
2

Ip
2

(Q)

Ip
2

( b)

Fig. 1. (a) An antisymmetrical and (b) a symmetrical lateral loading.

lateral load p according to classical plate theory is J.Y.:. where

Hence

(51)

(52)

and we see that the change in half-thickness due to the symmetrical loading of Fig. l(b) is
of the order (h4/l4 )J.Y.:., where l is a length typifying a half-wavelength of the mode. But
we shall also find that the correction to the classical deflection due to transverse shear
deformation is of order (h2/12)J.Y.:.. and to the accuracy that we shall be concerned with it
is therefore legitimate to replace the loading by that of Fig. l(a). [An exception to this
might, however, occur if C33 is small compared with Cll , C22 or (C12 + 2C66).]

The general solution for the displacements due to the antisymmetric loading is given
by eqns (20) with K; =O. The boundary conditions (50) lead to three simultaneous
equations for the K 1 cOJlstants which are identical with (25) except that the zero on the
right-hand side of the first equation is replaced by P/h. The solution of these equations
can conveniently be written as

where (i, j, k) = (1, 2, 3) or (2, 3, 1) or (3, 1, 21 and (J is the determinant of the matrix in
eqn (25). But this determinant is given by the expression on the left-hand side of eqn (29),
and we note also that e=0, since O'~, O'~ and CJ) are all zero. Hence, using eqns (29) and
(34)-(37), we have

(J h2[1 h2{(Cll 2Cu) 2 (C22 2C23)p2}J( 2 P2)-= -- -- --- a + --- a '711 + "22
" 12 10 Css C33 C44 cn

(54)

where '711 and '722 are defined by eqns (44) and" by eqn (33).
Consider now the lateral deflection of each of the two surfaces z = ± th, which we

shall denote by J¥. sin ax sin py. From the third of eqns (20) with K; = 0 we find that

3

J¥. = L K1coshthql'
;* 1
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Hence, from (53)
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where the meaning of the summation L* is the same as in eqns (18) and (19). This equation

can be written more concisely as

where the H~~ quantities are as defined in eqns (32). But from eqn (39) we have

H(-l) = [H(2) _ Q HO) +Q H(O)J/Q
p.. p.' 1 p.. 2 p.. 3

and hence, using Table 1, we find that

Equation (55) therefore becomes

Finally, on substituting eqn (54) and using the binomial theorem we find that

(55)

(56)

where J¥.:. is the deflection according to classical plate theory, defined in eqn (51).
Let the lateral deflection of the middle plane be denoted by Wosin (Xx sin f3y. From the

third of eqns (20) with K; = 0 we have

3 3

Wo = L K; = L sech!hq;{Kjcosh!hqj}
;= 1 ;= 1

= Jl(1 - ~ qf + .. .)K;COSh thqi

h2 3

= J.v. - -8 L qf K;cosh!hqj + ....
i=l

Hence, from eqn (53)

After some cyclic modification of the suffixes i, j, k this becomes
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which is more concisely written as

Ul _ ul Ph [ HlOl + HlO) H(OI)
"'0 - I'I'~ - 88 C( 31 32 + 33 + ....

Hence, using Table I, and eqns (13) and (56), we obtain

Finally, on substituting eqn (57) for J¥., we find that

453

(58)

In the special case of an isotropic plate, we have

Equations (57)-(59) are then much simpler

:; = 1 + (12/5)~ + O(~2)
01

Wo 3v 2

J¥. = 1 + 2(1- v)~ + O(~ )

(60)

(61)

(62)

(63)

where 11 is defined in eqn (46).
The difference between Wo and J¥. is not a trivial one. It is primarily due to the strains

&: arising from the Poisson's ratio effect of the bending stresses (Ix and (I,. This is easily
demonstrated, as follows. According to classical plate theory the bending strains ex and e,
are za.2J¥c,. and Zp2 J¥c,. times (sin a.x sin py), respectively. Hence from eqns (4), assuming that
(I: is negligibly small, we find that

and on integrating this with respect to z between 0 and !h we obtain

which agrees with eqn (58) to first order.
The magnitude of the difference is most easily appreciated if the plate is isotropic, in

which case eqns (61)-(63) show that, to first order

Wo - J¥. 5v=---J¥. - J¥.I 8(1 - v)'
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This is equal to 0.3125 if v = 113 say, so that the change in the half·thickness is by no
means negligible compared to the deflection due to shear. Now many higher order plate
theories assume that w is constant through the thickness, and if so the question immediately
arises as to whether one should compare it with l¥. or Wo, or maybe some average value
between the two. There appear to be at least two logical reasons for choosing l¥. for this
purpose. First the work done by the lateral pressure p is directly associated with l¥., so
that if a higher order plate theory agrees with ~ it should correctly predict the total strain
energy in the plate. Second, the middle plane deflection Wo has no obvious physical
significance and any experimental verification would inevitably involve measurement of
~. An additional, though perhaps minor, advantage of ~ is that the first-order correction
to J¥.:I in eqn (61) is independent of v.

To conclude this section we consider the bending strains ex and ey at the two surfaces,
which are of the form

(64)

It can be shown that

Ex = (P/28)[a. 2H\o/- (h 2/12){a. 2HW + a.fJHW + a.H\lj} + O(h4
)]

Ey= (P/28)[fJ 2HioJ - (h 2/12){a.fJHW + fJ 2HW + fJHi1j} + O(h4
)].

On using Table 1, eqns (13) with e= 0, and eqns (51) and (54) we finally obtain the
expressions

(65)

where tIll and '122 are defined by eqns (44).
If the plate is isotropic the equations are much simpler and it is not difficult to obtain

higher order approximations by assuming isotropy from the outset. The result for the
fourth approximation is as follows

3. SOLUTIONS USING MINDLIN THEORY AND COMPARISONS WITH THE

THREE·DIMENSIONAL ELASTICITY SOLUTIONS

In this section we shall solve the eigenvalue problem and the static loading problem
using Mindlin's plate theory[2]. We shall compare the results with the solutions obtained
in Sections 2.3 and 2.4, enabling us to draw certain conclusions about the Mindlin theory,
and especially about the so-called "effective shear rigidities", that appear to be new.

In order to make a proper comparison with the three·dimensional theory, we need a
version of Mindlin's plate equations which, in addition to transverse shear deformations,
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also incorporates:
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(a) the general orthotropic constitutive equations, eqns (4),
(b) the effects of rotational inertia, and
(c) the complete quadratic expressions (3) for the second-order strains t~ and t; when

calculating the change of potential energy of the static, in-plane, compressive stresses O'~

and O'~.

Despite the extensive literature on Mindlin's plate theory the author has been unable
to find a version in the published literature that satisfies all these requirements, and for
that reason we list the relevant equations in the next section.

3.1. The equations of Mindlin's plate theory for an orthotropic material
The central assumptions of Mindlin's theory are that the lateral displacement w is

independent of z, and that points on a normal to the middle plane before bending remain
on a straight line, though not a normal to the middle surface, after bending. Thus the
assumed displacement field is

u = - z'I'x(x, y, t), v = - z'I',(x, y, t), w = w(x,y, t) (67)

where '1'", and'll, are rotations of the normal.
In relating the stresses 0'", and 0', to the strains it is also assumed that the plate is in

a state of plane stress, so that 0': = O. This enables e: to be related to ex and e, and then
eliminated from the equations for 0'", and 0', in eqns (4). The result is

(68)

where Cll , cl2 and C22 are defined by eqns (38). Also eqns (67) imply that the strains "Ix:
and 1'y: are independent of z; to allow for the fact that this is not strictly correct the actual
shear moduli C44 and Css are replaced by empirical effective moduli c:4 and c~s. Hence
the shear stress-strain equations become

(69)

The derivation ofthe governing differential equations and natural boundary conditions
from Hamilton's principle now proceeds along standard lines, with the following results.

The stress resultants in the plate are given by

__ h3
{_ a'll", _ a'll,}

M x - 12 c ll ox +c12 oy

M __ h3
{- a'll", _ O'l'y}

, - 12 c12 ox + c22 oy

M __ h
3

{O'l'", a'll,}
"', - 12 c66 oy + ox

Qx = hC~s{~: - 'I'x}

Qy = hC:4 g;-'II,}.

(70)
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The equations of motion are
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aQx aQ
- - - :.=1 + hfiJ(w) = pax oy

oMx oMxy _ Q h
3

fiJ('P ) =0ax + oy x + 12 x

aMy oMxy _ Q h3
CD('P) =0ay + ax y + 12.z; y

(71)

where p(x, y) is the transverse load per unit area of plate, and fiJ is the operator defined
by eqn (2).

Substituting eqns (70) into eqns (71) gives the following three differential equations
for w, 'Px and 'Py

The natural boundary conditions are as follows:

on an edge x = constant

either w is specified or {Qx - h(1~ ~:} = 0,

either 'IIx is specified or {Mx+ ~; (1~ a~x} = 0,

and

{
h3 iJ'P}

either 'Py is specified or M xy + 12(1~fu = o.

on an edge y = constant

either wis specified or {Qy - h(1~ ~:} = 0,

{
h3 iJ'P}

either 'IIy is specified or My + 12 (1~~ = 0,

and

(72)

(73)

(74)
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3.2. Solution of the eigenvalue problem
We shall now obtain a solution to the eigenvalue problem of Section 2.3 using

Mindlin's theory. In Section 2.2 we defined the conditions of simple support in the three
dimensional theory as w = 0, v = 0, (1" = 0 on the edges x = 0, a, and w = 0, u = 0, (1, = 0
on the edges y = 0, b. For consistency, in Mindlin's theory we define them as w = 0, '1', = 0,
M" = 0 on x = 0, a, and w = 0, '1'" = 0, M, = 0 on y = O,b. With the aid of the first two
of eqns (70) we see that these are satisfied by a mode of the form

w = Wm sin ax sin (Jy cos rot

'1'" = R" cos ax sin (Jy cos rot

'1', = R,sin ax cos (Jycos rot

(75)

where Wm , R" and R, are constants and a and (J are such that aa/1t and fJb/1t are integers.
Substitution of eqns (75) into the differential equations, eqns (72), with p =0 gives

three homogeneous simultaneous equations for Wm , R" and R, and the requirement that
the determinant of the matrix of coefficients should vanish leads to the following
characteristic equation:

(76)

If shear deformations are neglected, i.e. if c:4 -+ 00 and C~5 -+ 00, this reduces to

This includes the effects of rotational inertia, which explains the presence of the second
order term involving eon the right-hand side. If that term also is neglected we obtain the
result of classical thin plate theory, in agreement with eqn (42) for the first approximation
of the three-dimensional theory.

A second approximation can now be obtained by substituting the classical plate theory
result for einto the right-hand side of eqn (76) and retaining terms of order h2 and h4

•

The result can be concisely expressed as

(78)

where" 11 and "22 are defined by eqns (44).
We can continue this process and obtain expressions of progressively higher order,

but we have done so only in the case ofan isotropic plate, for which the third approximation
is

(79)

SAS 2): 4-8
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where
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Table 2. Comparison of tbe coefficients /l.
and /li in eqns (47) and (79) for the eigen
value of an isotropic plate when

G*IG = 5/(6 - v) so that ftl = fti

ft. pi
v (eqn (47)) (eqn (79»

0 13.971 13.960
0.25 19.727 19.604
OJ 21.527 21.380
0.3333 22.921 22.760
0.4 26.327 26.138
0.5 33.771 33.560

'1 2G
J.tl = + G*(1 - v) (80)

(81)

and 4> and Ii are defined by eqns (45) and (46).
Let us now compare these results with the corresponding ones of the three-dimensional

theory of elasticity. It is convenient to start with the isotropic case and compare eqns (47)
and (79). We see that the second approximations agree if J.tl = J.t; and eqns (48) and (80)
show that this requires the effective shear modulus G* to be given by

G*/G = 5/(6 - v). (82)

Mindlin(2] assumed that G*/G = 1(
2/12 =0.822, a value that he obtained by making the

frequency ofthe first antisymmetrical mode of thickness-shear vibration (in which v = w =0
everywhere and u = V(z) cos rot) coincide with the exact one. It is implicit in Reissner's
plate theory[1] on the other hand, that G*fG = 5/6 = 0.833. It is, however, known from
numerical investigations[4,7] that both of these values lead to natural frequenciesoflateral
vibration that are slightly low, and both Srinivas et ttl.[4] and Dawe[8]observed that a
value of about 0.88 gave the best agreement with exact values. They both assumed v = 0.3
in their numerical work but Dawe[8) conjectured that the optimum value of G*IG would
depend upon Poisson's ratio. This is now confirmed by eqn (82), which gives 0.877 if
v =0.3, in very close agreement with the value 0.88.

Having forced the second approximations in eqns (47) and (79) to a~ee by choosing
G*fG in accordance with eqn (82), it is of interest now to consider the coefficients J.tz and
J.tz. They are compared in Table 2 and it will be seen that over the entire range 0 < \I < 0.5
they are in astonishingly close agreement. We conclude therefore that if G* is chosen in
accordance with eqn (SO), not only does the second approximation obtained fromMindlin's
theory agree precisely with that of the three-dimensional theory but also the third
approximations are in almost exact agreement.

These conclusions are independent of the mode, i.e. of the relative values of a and p.
In particular they remain valid if p, say, is zero. The mode is then cylindrical, and the plate
can be thought of as a simply-supported beam· of wide rectangular cross-section which is
subjected to a longitudinal compressive stress O'~ and undergoes either buckling or free
lateral vibrations. Thus eqn (82) also gives the effective shear modulus for buckling or
vibration of a Timoshenko beam of wide rectangular cross-section. Now in that case the
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material will behave essentially as if it were in a state of plane strain, with £., = 0, for which
the relevant stress-strain equations are

E [ au ow]
a", = (I + vXI _ 2v) (I - v) ax + v OZ

E [ ow au]
a z = (I + vXI _ 2v) (l - v) oz + vax

These equations are precisely the same as

if

(83)

(84)

Vo = v/(l - v) (85)

or conversely

(86)

But eqns (84) are the stress-strain relations for a state of generalized plane stress in
an isotropic material with Young's modulus Eo and Poisson's ratio Vo' We can thence
deduce that the effective shear modulus for buckling or vibration of a Timoshenko beam
of narrow rectangular cross-section is given by eqn (82) with v replaced by v/(I + v), i.e.

G*/G = 5(1 + v)/(6 + 5v). (87)

If v = 0.3 eqns (82) and (87) give G*/G = 0.877 and 0.867, respectively, so there is not much
difference between them in practice.

Let us now return to the orthotropic plate, and compare the second approximation
of Mindlin's theory (eqn (78)) with that of the three-dimensional theory (eqn (43)). We see
immediately that it is impossible in general to choose values for Mindlin's effective shear
moduli cL and c~s which are independent of the mode (i.e. of the ratio a./fJ) and which
make eqns (43) and (78) agree. The reason for this is the presence of the term

(88)

in eqn (43), and the absence of a matching term in eqn (78).
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There are, however, two exceptional circumstances in which the term vanishes. The first
is the very restrictive case of an orthotropic material with elastic constants satisfying the
condition

(89)

This is satisficd by isotropic materials, for which Cll = C22 = (CI2 + 2ebb ) = 2G/(1 - v).

The second exception is when f3 (or (X) is zero; as we saw previously this represents the
case of an orthotropic Timoshenko beam with a wide rectangular cross-section. In either
of these two circumstances eqns (43) and (78) agree exactly if

(90)

where we have used eqns (38) for cII and cn' For an isotropic material eqns (90) give
C44 = C~5 = 5G/(6 - v), in agreement with eqn (82).

It is possible to use an argument similar to that used in deriving eqn (87) to deduce
a value for C~5 appropriate to the buckling or free vibration of an orthotropic Timoshenko
beam with a rectangular cross-section that is narrow in the y-direction. The result can be
obtained by replacing CII' C33 and Cl3 in the second of eqns (90) by Cil - (cf2/cd,
C33 - (C~3/Cn) and Cl3 - (CI2C23/cd, respectively.

3.3. Solution of the static loading problem
Consider now the problem of static loading described in Section 2.4. The solution by

Mindlin's theory is obtained by substituting eqns (75) with w = 0 into the differential
equations, eqns (72), with 2 = 0 and p = P sin (Xx sin f3y. This gives three simultaneous
equations for Wm , Rx and Ry and on solving for Wm , and expanding in powers of h2, we
obtain the following second approximation

The bending strains at the surfaces z = ±-!-h are given by eqn (64), and from eqns (67) we
have

(92)

On solving for Rx and R y , and again expanding in powers of h2
, we find that

(93)

If the plate is isotropic the equations are greatly simplified and the solution can be
shown to be

Wm = 1 + 2G /),.
WeI (l - v)G*

(94)
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(95)

Note that there is no error in eqns (94) and (95) other than the inherent one arising from
the basic assumptions of Mindlin's theory.

Let us now compare this solution with that of the three-dimensional theory, and we
start with the isotropic case. From eqns (94) and (61) we see that Wm agrees to second
order with the surface deflection, J¥., if

G* 5
-=---
G 6(1 - v)'

(96)

As discussed previously, this would also ensure that Mindlin's theory gives the strain
energy correct to second order.

[We could alternatively make Wm agree to second order with the middle plane
deflection Wo of eqn (63), by choosing G*/G = 20/(24 - 9v), but the author can see no
good reason for choosing Wo in preference to J¥..J

We see from eqn (95) that the bending strains of the isotropic Mindlin and classical
theories are identical, and agree only to first order with those of the three-dimensional
theory in eqns (66). Note, however, that the coefficient of tJ. in eqn (66) is zero if
v = 2/7 = 0.286, and the Mindlin and classical theories then give strains correct to second
order.

Turning now to the orthotropic case, we see from eqns (91) and (57) that it is in
general impossible to choose values for C:4 and c~s which are both independent of alP
and make Wm and J¥. agree to second order. There are, however, the same two exceptions
as in the eigenvalue problem, namely the case of orthotropic materials with elastic constants
satisfying eqn (89), which encompasses isotropic materials, and the case of cylindrical
bending when p(or ex) is zero. In both cases Wm and J¥. agree to second order if

and (97)

These both reduce to eqn (96) in the case of an isotropic material.
As in the eigenvalue problem, ifP-+ 0 the problem becomes one of a simply supported

beam of wide rectangular cross-section carrying a lateral pressure p that varies sinusoidally
in the longitudinal x-direction. The Mindlin plate becomes a Timoshenko beam and eqn
(96) or eqn (97) gives the appropriate effective shear modulus, depending upon whether it
is isotropic or orthotropic. These equations are independent of ex and since any distribution
of lateral load can be considered as a series of sinusoidally distributed loads of the type
considered here it follows that eqn (96) or eqn (97) gives the optimum value of the effective
shear modulus for any smoothly varying load, including a uniform one.

The corresponding value for a narrow rectangular cross-section can be deduced in a
manner exactly similar to that used in Section 3.2. In particular, for an isotropic beam,
replacing v by v/(1 + v) in eqn (96) gives

G*/G = 5(1 + v)/6. (98)



462 W. H. WIDRICK

A check on this value can be obtained using the known solution for a simply supported
beam of span I and narrow rectangular cross-section carrying a uniform lateral pressure
q, obtained by means of an Airy stress function in the form of a polynomial[9]. According
to that solution the surface deflection at mid-span is

Timoshenko beam theory, on the other hand, gives

which agrees with the stress function solution to second order if G* is given by eqn (98).
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APPENDIX A: THE SUMMATIONS I .... AND J....

This Appendix is concerned with relations between the quantities I .... and J.... and in particular we show
how they can all be expressed as 11.1 times a polynomial in Q" Q2 and Q3'

First consider I .... defined by eqn (\ 8). Without altering this definition we can modify the suffixes of the two
terms within the summation, in the first by cycling forward so that (i,j, k) .... U, k, i), and in the second by cycling
backward so that (i,j. k) .... (k, i,j). Hence we find that

so that

which implies

1m ,,. = -I.. ,,"

I•.• = O.

(AI)

(A2l

(A3)

With eqn (A2) in mind we may now concentrate on the case where m > n and we see from eqns (AI) and (\9)

that

111ft,,. = J",,,,-n ifm> n. (A4)

Equations (A2) and (A4) enable all summations of the I .... type to be expressed in terms of summations of the
1.... type, which we now proceed to consider.

Note first that

10 .• =J...o =0. (A5)
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Note also that

whence, using eqn (AS), we obtain the identity

By similar manipulations we can show that

and

Moreover, the following recurrence formulae can be derived:
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(A6)

(A7)

(A8)

and

forn ~ 2 (A9)

(AIO)

Repeated applications of eqns (A9) and (AIO), making use of eqns (A6)-(A8), enable as many of the J,..•
summations as are needed to be expressed in terms of JI. 1 times a polynomial in Qp Qz and Q3'

APPENDIX B: DIRECT DERIVATION OF EQUATION (47)

In the special case of an isotropic material two of the roots qi of the auxiliary equation of eqn (IS) are
equal. The roots are in fact given by

q~ = q~ = (lXz + pZXI - tP)

z z z [ (I - 2v) ]
q3 = (IX + P) I - 2(1 _ v) tP

(BI)

where tP is defined by eqn (45).
The general solution for U(z), V(z) and W(z) in which U and V are odd-valued and W an even-valued

function can be shown to be

U = IX(Klsinhqzz + K3sinh q3Z)

V =P(Kz sinh qzz + K3sinh q3Z)

W= qi1(IXZK 1 + PZKz)coshqzz + q3K3coshq3z.

(B2)

Using this solution, the condition that the surfaces z = ±!h are stress free leads to three homogeneous
simultaneous equations for the constants of integration K I' Kz and K3' The requirement that tbe determinant
of the matrix of coefficients must vanish gives the characteristic equation, which can be arranged in tbe following
form:

where

[
z JZ 4qz [- t h - J1- _q_z_ =__z_ q3 an qZ_1

IXz + pz IXz + pz qz tanhq3
(B3)

The left-hand side of tbis equation is simply equal to tPz and after expanding the term in brackets on tbe
right-hand side in a power series, using eqns (BI), and dividing throughout by tP, we obtain

2.1 [ ( 7) {62 27 - 28V} JtP = -- 1- tP + -.1 + -Az +---tPA + OW) .
I - v 5 35 10(1 - v)

(84)
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The grouping of the terms on the right-hand side of eqn (841 reOects the fact that rp IS of order t.. Now collecting
together the terms involving ¢ we obtain

[
21'1 (27 - 28\), , ] 21'1 [ 7 62, , J

¢ I-t--
I
-- S ,t.-+O(!I'j =-1- 1--

S
t.+-

3S
t.-+OIt.-!.

- \' (! - I'J- - \

Finally. after inverting the serIes on the left-hand side. we obtain eljn 147i.

(851


